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In [l ] the author investigated certain types of motion of a heavy gyro- 
stat with one point fixed*. This work presents an investigation of the 

stability of motion of heavy gyrostats of a special kind resting on a 
fixed horizontal plane. 

1. Let the axis of rotation of a symmetric rigid body S, (rotor) be 
fixed in another rigid body S, representing a gyrostat. Let us assume 
further that this axis of rotation coincides with the rotation axis of 
the central ellipsoid of inertia of the body S,. The equation of motion 

of S2 with respect to Sl in the Lagrange form is 

(1.1) 

Here T2 is the kinetic energy of S2 in its motion relative to the 
fixed coordinate system (77 (; a is the angle between two planes through 
the axis of rotation, of which one is fixed in S, and another in S,; Q 
is the generalized force corresponding to the coordinate a. 

By Koenig’s theorem we have 

where R *, A2 = B,, C2 are, respectively, the mass and the principal 
central moments of inertia of the body S2; v2 is the velocity vector of 

l It should be mentioned here that in [ 1 1 on p. 11, last line, KI = 
const should read k, = const. [page and line numbering refers to 
translated PMM.1 
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its center of gravity 02; Oi (i = 1, 2, 3) are the components along the 
principal central axes of inertia of S, of the velocity vector of SI 
moving relative to the fixed coordinate system. Equation (1.1) now be- 
comes 

CZ ((I) 3’ + a”) = (2 (1.2) 

We shall assume that the only force which acts on the rotor is the 
pressure of S, at the end parts of its axis. In this case Q = 0 and 
Equations (1.2) yield immediately the first integral 

(4 = co 3 $- a’= ~01x4 (1.3) 

expressing the fact that the component of the angular velocity along the 
rotor’s axis of rotation is constant 13 1 b 

The angular momentum G of the gyrostat S with respect to an arbitrary 

point is the vector sum of the angular momenta of the rigid body SI and 

S2. The angular momentum of S2 about its center of gravity 0, equals 

.4?e + &ok (e’ = alal -I- op2) 

Here k is the unit vector along the rotor’s axis; e is the equatorial 

component of the rotor’s angular velocity. 

Following Zhukovskii [ 2 I we introduce an auxiliary rigid body con- 

sisting of the body SI and of an infinitely thin rod of mass a2 connected 
rigidly with SI whose center of gravity is at 0,. The rod is directed 
along the rotor’s axis, and its moment of inertia about a vertical axis 
through 0, is AZ. The angular momentum vector G equals the sum of the 

vector C, ok plus the angular momentum vector of the auxiliary body. Let 
us introduce the coordinate system Oxyz whose axes are along the princi- 
pal axes of inertia of the auxiliary body and the origin 0 is in S,. The 

r-, y- and z-components of the angular momentum vector G are 

G, = .4p + k,, C,, = FIT -j- ka. c, --: Cr + If3 (1.4) 

Here A, B, C are the moments of inertia of the auxiliary body; p, q, 

r are the components of the angular velocity vector of the body S, along 

the moving axes; ki (i = 1, 2, 3) are the components of the vector C2 ok 
also along the moving axes. We can conclude now that if the gyrostat has 
a fixed point 0, then its equations of motion caused by the gravity 
forces are in the form (1.1) of [ 1 I ) and the results of the investiga- 

tions of stability of gyrostats when ki = const given in [ 1 1 are appli- 
cable also to our body Sl with its rotor S2. 

2. We shall examine now the motion of the Gervat gyroscope (named by 
Gervat “Pied equilibriste”) [ 3 I, resting on an absolutely smooth hori- 

zontal plane, and acted upon only by gravity forces. 
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The device consists of the body S1 in the form of a semicircular 
frame ABC, whose circular segment is directed downward, connected rigid- 
ly to the leg BDE, and of the symmetric rotor S,. The frame ABC supports 
the rotor’s axis in the bearings at A and C. The leg BDE has a recti- 
linear part DE which is perpendicular to the plane of the semicircular 
frame ABC, enabling the device to stand on the horizontal plane. The 
middle plane of the rotor passes through DE, the center of gravity of 
the rotor 0, is on the axis AC in the plane through DE perpendicular to 
AC. 

When the rotor is not moving, then the vertical position of equi- 
librium of the device is unstable; when it rotates sufficiently fast 
then the equilibrium is stable. The theory of the Gervat gyroscope has 
been given by Carvallo, who assumed that the body S, is weightless; 
otherwise the theory becomes considerably more complicated. 

Let 57 [ be the fixed coordinate system, the axes 4 and T] being in 
the horizontal plane, and the c-axis being directed vertically upwards. 
Let the coordinate system OXYZ move with the body S, its origin 0 co- 
inciding with the center of gravity of the whole device, which is located 

on the line BO,. The line 00, is directed upwards and coincides with the 

y-axis; the x-axis, perpendicular to the y-axis, is in the middle plane 
of the rotor, and the z-axis perpendicular to the x- and y-axes forms 

with them a right-handed system. The z-axis is obviously parallel to the 

rotor’s axis AC. 

Let the X-, y- and z-axes be the principal central axes of inertia of 
the auxiliary body. Let us consider also the coordinate system Oxlylzl 
whose axes are parallel, respectively, to the axes 5, 7, r of the fixed 
system. Let the coordinates of the center of mass 0 in the fixed system 

be [, 1, [, and let the angle between the zl- and z-axes be 8, and the 

angle between the x1- and x-axes be I,!J. The length of the normal OP which 
is dropped from the point 0 to the base of DE is 1. 

Cl early 
5 = 1 sin 8 (2.1), 

The X-, y- and z-components of the instantaneous angular velocity of 

the body S, equal, respectively 

P = O’, q=$‘sinfj, r=$‘cos(l (2.2) 

Since the forces acting on the device, that is the weight Mg and the 
normal reaction of the plane N, are vertical, the point Q which is the 
projection of the point 0 on the horizontal plane, in general, will move 
uniformly in a straight line. This would occur in a general case, but we 
can assume without any loss of generality that the point Q remains 
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stationary. 

Since in our case k, = k, = 0. kJ = CZo, we can use general theorems 
of mechanics to derive the following energy integrals: 

” 
n^l(Z)-+ Ap 2 + Bq2 + Cr2 + znilgc = 11 (2.3) 

and area integrals 

Bq sin e f  (Cr f  CZO) cos 8 = k (2.4) 

Here M is the mass of the device, g is the gravitational acceleration, 
h and k are arbitrary constants. 

Substituting into (2.3) and (2.4) for p, q, r, 5 their equivalents 
given in Formulas (2.1) and (2. 2)) we obtain the equation 

(b + e COSa 8) (I + c co32 8) 8’2 = (a - a sin 8) (1 + c ~0~2 8) - (p -- ~~0 cos 0)x (2.5) 

Here 

2hJgl 

a =iT-’ 
C-B C? nJ1” 11 

c==u’ 
cz= - , 

B 
I?=-, 

B 
a=-, 

B 

The integration of Equation (2.5) results in a formula for t in the 
form of a hypergeometric integral of 8. Inversion of this integral re- 
duces the calculations of the angles I/J and a to quadratures on account of 

a’ = 01 - l#’ cos 0 

ge could also find the curve traced on the horizontal plane by the 
point P of the base DE [ 3 1 A 

3. We shall consider now a gyrostat S which will differ from the de- 
vice investigated in Section 2 by the design of its leg. Let the leg of 
the gyrostat frame have a plane knife-like stand in the form of a 
circular segment [ 4 I of radius a. The segment’s center O1 is on the y- 
axis, and the y-coordinate of O1 equals aI.. This design adds one more 
degree of freedom; the device can rock about a horizontal axis perpendi- 
cular to the chord of the circular segment. 

The orientation of the moving coordinate system Oxyz relative to the 
fixed coordinate system Oxlyl z1 will be determined through the Eulerian 
angles 6 , $, $. Instead of Formulas (2.1) and (2.2) we have now 

5 = a sin e - al sin 8 coscp (3.1) 

p = 9’ sin 0 sin cp + 8’ cos cp, q =*‘sinfI coscp-e’sincp, r = cp’ + I$ cod3 (3.2) 
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The energy integral retains its form (2.3). but the integral of the 
areas becomes 

Ap sin I3 sin v + l3q sin 0 cos cp + (CT + C20)) cos 0 = const (3.3) 

We shall investigate the stability of equilibrium of the gyrostat’s 
vertical position occurring at the following values of the variables: 

0 _ l/*x, 0’ = n, q1 = const, $’ = 0, cp = cp’ = 0, 0 = const (3.4) 

In the perturbed motion we set 

8 -1i2n+fl, 

retaining the same notation for the remaining variables. 

By Equations (3.1) and (3.2), the integrals (2.3) and (3.3) will take 
on for the perturbed motion the following form: 

VI = :10,‘2 + 9$‘? + Cq” + Alg (a1 $ - /0]2) + . . . = const 

VZ = (A - B) Ol’(r, + B$’ - (Ccp’ + C20) 0, + . . = const (3.5) 

Here I = a - al, and the dots indicate the omitted terms of the third 
and higher order of smallness. Let us consider the function 

(3.6) 

where x is a certain constant. 

BY Sylvester’s criterion, the necessary and sufficient condition for 
the function V to be positive-definite with respect to the variables 
under consideration is 

1) 1 + ?*I~ > 0, 2) A (c20)? - ~nf~z) - nfgl > 0, 3) aI> 0 

Clearly, the above inequalities can always be satisfied by an appropri- 
ate choice of the quantity h > 0 if 

al > 0, C?% 2 - BMgl > 0 (3.7) 

When the conditions (3.7) are satisfied, then the function V is 
positive-definite, and its time derivative, since we are dealing with the 
perturbed motion, equals zero. Thus the function V satisfies all condi- 
tions of Liapunov’s theorem on stability. 

In this way, the conditions (3.7) turn out to be the sufficient con- 
ditions of stability of the gyrostat’s unperturbed motion (3.4) with re- 
spect to the variables 8, 8’, $‘, 4, 4’. Th e existence of the integral 
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(1.3) makes the motion (3.4) stable with respect to the variable a’ as 
well. 

It can be easily shown that the inequalities (3.7) are the necessary 
conditions of stability for the gyrostat’s vertical position of equi- 
librium as well. Let us consider the equations with variations for the 
perturbed motion 

The characteristic equation of these equations 

A (1) = h2 (ABh2 + Cz202 - BMgl) = 0 

in the case when CZ2d - BMgl < 0, has a root with a positive real part, 

which indicates that in this case the perturbed motion is unstable. 

The condition aI > 0 indicates that the geometric center of the stand, 
which has the form of a circular segment, should be located above the 
center of gravity of the device. This condition is the necessary and 

sufficient condition of stability of rocking the gyrostat about an axis 
in the plane of the base perpendicular to the chord of the segment [ 4 1 L 

The second condition in (3.7) allows the determination of the smallest 
angular velocity of the rotor S, at which the gyrostat is still stable. 

It is interesting to compare the above condition with Maievskii’s 
condition of the rotational stability of a gyroscope 

C%$ - 4AMgl> 0 

We notice that, other conditions being equal, the stability of a gyrostat 
is established at an angular velocity which is half as large as that of 
a gyroscope. 

4. We shall consider now the stability of motion of a gyrostat 5’1 
with a spherical base resting on a horizontal plane. The gyrostat S, 

housing the rotor S, can, for example, be in the shape of a hollow sphere, 
like the gyroscopic sphere of Bobylev [ 5 1, The spherical base of Sl 
touches the supporting plane at the point P. Let the geometric center of 

the spherical base OI not coincide with the center of gravity of the 
gyrostat 0, let the moving coordinate system Oxyz have its origin at 0 
and let its axes be along the principal axes of the central ellipsoid of 
inertia of the auxiliary body, which itself is an ellipsoid of revolution 
about the Oz-axis. Let the point 0, be on the Oz-axis, let its z-coordi- 
nate be al, let the radius of the spherical base be a, and let the axis 
of the rotor S2 coincide with the Oz-axis. 
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The equations of motion of a heavy gyrostat resting on a fixed hori- 
zontal plane are derived from the general theorems of mechanics. From 
the theorem on the motion of the center of gravity of a system we have 
the following equation: 

du 
-& + qw - rv = x - g-r1 

dV 
-& + ru - pw = I’ - gy, 

dw 
d~i-Pv-qgu==Z-ggr2 

(4.1) 

Here u, u, w are, respectively, the X-, y-, z-components of the velo- 
city vector of the center of gravity 0; X, Y, Z are the components of 
the reaction of the fixed plane at the point of contact P caused by a 
unit mass. The direction cosines of the c-axis with respect to the axes 
x, Y. 2 are yl, ys, yx, respectively, and they satisfy the Poisson equa- 
tion 

(4.2) 

On the strength of the theorem of the angular momentum of a system 
about its center of gravity we have 

A ds + (C - *4) qr + c20 q = hJ (YZ - ZY) 

A 2 + (A - C) p r - C2op = ht (~7 - zz) 

(4.3) 

dr 

where the coordinates of the point of contact P are 

3: = --a-(1, y = -ay2, (4.4) 

The equations of motion of a gyrostat (4.1), (4.2), (4.3) must be 
accompanied by constraint equations. If the supporting horizontal plane 
is absolutely rough, then the velocity of the point of contact P equals 
zero, that is 

u + qz - ry = 0, 21 + rz - pz = 0, w + py - q2 = 0 (4.5) 

If the plane is not absolutely rough, then the body S, can slide. The 
friction force F is proportional to the normal reaction N, and it opposes 
the motion of the point of contact P. The elementary work of the reaction 
in a real displacement is obviously non-positive: 

X (u + qz - ry) + Y (v + rz - pz) -k Z (w + py - qr) < 0 (4.6) 
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If the horizontal plane is absolutely smooth, then the reaction is 
normal to the plane, and also 

x = :Yr,, 1. = A’-(?, z = K-f3 (4.7) 

In every case the velocity vector of the point of contact P is per- 
pendicular to the c-axis, hence the following equation 

Tl (u + qi - ‘y) T 72 (2. i- rx-Ppz)$-r3(~L’-~py-q~)= 0 (4.8) 

must be satisfied. 

Let us multiply Equations (4.1) by Mu, Mu, Mv, Equations (4.3) by p, 

9, rr respectively, and add them; the result is 

From the above equations and from the relations (4.5) to (4.8) follows 

IV (u2 t- 2.? + u.“) + A @” + q*) + Cr* + 2Mgc < colrst (4.9) 

In the case of an absolutely smooth or an absolutely rough surface we 
shall have only the signs of equality indicating the existence of the 
energy integral. 

It is easily seen that the height of the center of gravity of the 
gyrostat above the plane is [ = a - aIy3. 

Let us now multiply Equations (4.3) by the coordinates of the point 
of contact P, that is by X, y, Z, respectively, and add them. By Equa- 
tion (4.4) and (4.2) we obtain the first integral_ 

A (px $- q!y) + (Cr + C20) z = const (4.10) 

The integral (4.10) shows that the scalar product of the gyrostat’s 
angular momentum vector about its center of gravity 0 multiplied by the 
radius vector of the point P centered on 0, is constant. In the case 

when aI = 0, the gyrostat’s center of gravity 0 coincides with the center 
of the spherical base O,, and the integral (4.10) becomes the area inte- 
gral. 

Poisson’s equations (4.2) possess the obvious integral 

r12 + -$ + g = 1 (4.11) 

In the case of an absolutely smooth surface, from the third equation 
in (4.3) and by (4.4) and (4.7) follows the first integral 

r = const (4.12) 
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We shall investigate now the stability of the gyrostat on a rough or 
on a smooth surface. The equations of motion (4.1) to (4.3) have the 
following particular solution: 

p=q=o, r = PO, uzv=w=o, y1 = 72 = 0, 73 = 1 (4.13) 

whereby 

x zzz ‘I’ z 0, z = g, 32 = y = 0, z=al-a=---1 

In the perturbed motion we set r = r. + @I, Y3 = 1 + & and leave the 
remaining variables as they were. 

By the equations of the perturbed motion we have 

v1 = M (u2 + 3 + w2)+ A (p2 + q2) + C (PI2 + 2r;BJ - 2fiIgalP2 % VIO 

v2 = A (pyl $- qr2) + (Cm + CZO) P.L+ CP,Pz f  CT PI= const (4.14) 

v3 = ylz + y22 + p22 + 242 = 0 

Here V,, = const represents the initial value of the function V,; the 
equality sign occurs when the surface is ideally rough or smooth. and 
the inequality signs occur when there is sliding with frictional forces 
opposing the motion of the point of contact. 

Let us consider the function 

I’ = L’l + 2kV2 + pv3 + + (C - A) h2v32 

= ‘-1 (p2 + q2) $ 2.-u lpr1 + qye) + p c-r12 + -r22) + 

+ C/31z + 2C431P2 + [(C - A) A2 + pL] P2” t- 

(4.15) 

+ fif( u~+v~+~~~~)+~C(~~+~~)~~+~(C-AA)?~~(~~~ + rz2 + P22) Pz 

where x is a constant, and p = Mga1 - (Cr,, + C.@x. BY Sylvester’s 
criterion the necessary and sufficient condition for the quadratic form 
appearing in the function V to be positive-definite is the inequality 

f  (1) E Ah2 + (Cm + C20) h - Mgal < 0 (4.16) 

In general, the above inequality is satisfied when the polynomial 
f(x) has two distinct real roots, that is when 

(Cm -I- CZ~)~ + 4AMgal > 0 (4.17) 

It is quite clear that the linear part of the function V vanishes 
when 
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and with the above value of x the condition (4.16) assumes the form 

(4.18) 

Since dV/dt = dV,/dt < 0, the function (4.15) subjected to the condi- 
tion (4.18) satisfies all the conditions of Liapunov’s theorem on sta- 
bility. In this way, the inequality (4.18) becomes the gyrostat’s suffi- 
cient condition of stability of the unperturbed motion (4.13), with re- 
spect to the quantities u, II, a, p, Q, r, yl, y2, yS. 

If we set o = 0. then the inequality (4.18) assumes the form 

( c - .4 +) ro2 + Mg a$ > 0 

and becomes the sufficient condition of stability of rotation about a 
vertical axis of a heavy solid with a spherical base resting on a hori- 
zontal plane. 

When a1 < 0, then the center of gravity of the body is above the geo- 
metric center of the spherical base. In this case the rotation of the 
body is stable if the rotational angular velocity is sufficiently great 
and if the condition Cl > Aa is satisfied. 

On the other hand, when al > 0. then the center of gravity of the 
body is below the geometric center 0,. In this case, when Cl > Aa is 
satisfied. the rotation of the body is stable for all values of the 
angular velocity re; if the last inequality is not satisfied, that is, 
when Cl < Aa. then the rotation may still be stable when the additional 
condition 

ro2 < 
Mg alI’ 

Aa--C1a 

is satisfied. 

The above analysis of stability is applicable in particular to the 
tippe-top (a, > 0), which has been investigated in numerous works. In 
particular, in [6 I we have the investigation of the motion of such a 
top in the first approximation and on the assumption that at the point 
of contact of the top with the surface forces of viscous friction are 
acting. The authors of the above-mentioned paper, using linearized equa- 
tions of motion, have found the necessary and sufficient conditions of 
stability of motion of the top about a vertical axis, which agrees with 
our condition (4.19), except for notation. 
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If the surface is absolutely smooth, then the equations of the per- 
turbed motion have not only the first integrals (4.14) but also the first 
integral 

Vd= PI = const 

We construct the function 

w= v --PC(ro _tnfj,l 

where V is determined in (4.15), and find that in this case the sufficient 
condition of stability of the unperturbed motion (4.13) is the inequal- 
ity (4.17). 

We shall investigate also the function 

whose time derivative, on the strength of the equations of the perturbed 
motion, equals 

W1’ = A (p2 + q2) - (CrO + CO) (p71 + qTz) - Mgal (71” + T22) + . . . 

where the dots indicate the omitted terms of higher order of smallness. 
It is clear that under the condition 

(Cro + CZ~)~ + 4AMga1<. 0 

the function R,’ is positive-definite. By Chetaev’s theorem on instability 
the unperturbed motion (4.13) is unstable. 

We conclude that the inequality (4.17) is the necessary and sufficient 
condition of a gyrostat’s stability of rotation about a vertical axis on 
an absolutely smooth horizontal plane. 
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